571 research outputs found

    Experimental study of depolarization and antenna correlation in tunnels in the 1.3 GHz band

    Get PDF
    Measurements have been carried out in a low-traffic road tunnel to investigate the influence of the polarization of the transmitting and receiving antennas on the channel characteristics. A real-time channel sounder working in a frequency band around 1.3 GHz has been used, the elements of the transmitting and receiving arrays being dual-polarized patch antennas. Special emphasis is made on cross-polarization discrimination factor and on the spatial correlation between array elements which has a great influence on the performances of transmit/receive diversity schemes. Various polarizations both at the transmitter and the receiver have been tested to minimize this spatial correlation while keeping the size of the array as small as possible

    Channel correlation-based approach for feedback overhead reduction in massive MIMO

    Get PDF
    For frequency-division duplex multiple-input-multiple-output (MIMO) systems, the channel state information at the transmitter is usually obtained by sending pilots or reference signals from all elements of the antenna array. The channel is then estimated by the receiver and communicated back to the transmitter. However, for massive MIMO, this periodical estimation of the full transfer matrix can lead to prohibitive overhead. To reduce the amount of data, we propose to estimate the updated channel matrix from the knowledge of the full correlation matrix at the transmitter made during some initialization time and the instantaneous measured channel matrix of smaller size, characterizing the link between the user and a limited number of reference array elements. The proposed algorithm is validated with measured massive MIMO channel transfer functions at 3.5GHz between a 9×99 \times 9 uniform rectangular array and different user positions. Since measurements were made in static conditions, the criteria chosen for evaluating the performance of the algorithm are based on a comparison of the predicted channel capacity calculated from either the measured or estimated channel matrix

    Experimental investigation of V2I radio channel in an arched tunnel

    Get PDF
    This paper describes the results of the experimental radio channel sounding campaign performed in an arched road tunnel in Le Havre, France. The co-polar and cross-polar channels measurements are carried out in the closed side lane, while the lane along the center of the tunnel is open to traffic. We investigate the channel characteristics in terms of: path loss, fading distribution, polarization power ratios and delay spread. All these parameters are essential for the deployment of vehicular communication systems inside tunnels. Our results indicate that, while the H-polar channel gain attenuates slower than the V-polar channel due to the geometry of the tunnel, the mean delay spread of the H-polar channel is larger than that of the V-polar channel

    Вплив екологічних чинників на відтворення та розвиток населення

    Get PDF
    Мета статті. Враховуючи суттєвий вплив екологічних чинників на відтворення та розвиток населення України, проаналізувати стан екологічної ситуації щодо екологічної стійкості регіонів, забезпеченості питною водою та якісним харчуванням. Визначити заходи забезпечення екологічної стійкості та безпеки, покращання здоров’я, стабілізації і поступового поліпшення стану навколишнього природного середовища, раціонального використання і відтворення природних ресурсів, як одного з чинників покращання якості і продовження життя населення, його відтворення та розвиток

    Polarization properties of specular and dense multipath components in a large industrial hall

    Get PDF
    This paper presents an analysis of the polarization characteristics of specular and dense multipath components (SMC & DMC) in a large industrial hall based on frequency-domain channel sounding experiments at 1.3 GHz with 22 MHz bandwidth. The RiMAX maximum-likelihood estimator is used to extract the full polarimetric SMC and DMC from the measurement data by taking into account the polarimetric radiating patterns of the dual-polarized antennas. Cross-polar discrimination (XPD) values are presented for the measured channels and for the SMC and DMC separately

    Impact of polarization diversity in massive MIMO for industry 4.0

    Get PDF
    The massive polarimetric radio channel is evaluated in an indoor industrial scenario at 3.5 GHz using a 10×10 uniform rectangular array (URA). The analysis is based on (1) propagation characteristics like the average received gain and the power to interference ratio from the Gram matrix and (2) system-oriented metrics such as sum-rate capacity with maximum-ratio transmitter (MRT). The results clearly show the impact of polarization diversity in an industrial scenario and how it can considerably improve different aspects of the system design. Results for sum-rate capacity are promising and show that the extra degree of freedom, provided by polarization diversity, can optimize the performance of a very simple precoder, the MRT

    Continental collision, gravity spreading, and kinematics of Aegea and Anatolia

    Get PDF
    International audienceWe have carried out experiments using a layered medium of sand and silicone to investigate the lateral extrusion of a material which spreads over its own weight while being compressed by the advance of a rigid indenter. Boundary conditions in the box mimic those prevailing in the Anatolian-Aegean system. Both shortening in front of the rigid piston, which models the northward motion of Arabia, and extension resulting from the gravity spreading of the sand-silicone layer are necessary to initiate the lateral extrusion. Strike-slip faults accommodate the lateral escape and link the normal faults accompanying gravity spreading with the thrust faults in front of the rigid indenter. Strike-slip faults begin to accommodate extrusion at a late stage in the experiments after the normal and thrust faults have developed. Experiments also show that the initial geometry of the boundary of the spreading layer may result in the formation of two arcs behind which material extends, in a manner analogous to the Hellenic and Cypriot arcs, without invoking a rheological change at the junction of the two arcs. The experiments also suggest that southward motion of the eastern part of the spreading region is compensated by the northward advance of the piston, which is a possible explanation for the slower movement of the Cypriot arc compared to the Aegean arc

    Sem@KK: Is my knowledge graph embedding model semantic-aware?

    Full text link
    Using knowledge graph embedding models (KGEMs) is a popular approach for predicting links in knowledge graphs (KGs). Traditionally, the performance of KGEMs for link prediction is assessed using rank-based metrics, which evaluate their ability to give high scores to ground-truth entities. However, the literature claims that the KGEM evaluation procedure would benefit from adding supplementary dimensions to assess. That is why, in this paper, we extend our previously introduced metric Sem@K that measures the capability of models to predict valid entities w.r.t. domain and range constraints. In particular, we consider a broad range of KGs and take their respective characteristics into account to propose different versions of Sem@K. We also perform an extensive study to qualify the abilities of KGEMs as measured by our metric. Our experiments show that Sem@K provides a new perspective on KGEM quality. Its joint analysis with rank-based metrics offers different conclusions on the predictive power of models. Regarding Sem@K, some KGEMs are inherently better than others, but this semantic superiority is not indicative of their performance w.r.t. rank-based metrics. In this work, we generalize conclusions about the relative performance of KGEMs w.r.t. rank-based and semantic-oriented metrics at the level of families of models. The joint analysis of the aforementioned metrics gives more insight into the peculiarities of each model. This work paves the way for a more comprehensive evaluation of KGEM adequacy for specific downstream tasks

    Treat Different Negatives Differently: Enriching Loss Functions with Domain and Range Constraints for Link Prediction

    Full text link
    Knowledge graph embedding models (KGEMs) are used for various tasks related to knowledge graphs (KGs), including link prediction. They are trained with loss functions that are computed considering a batch of scored triples and their corresponding labels. Traditional approaches consider the label of a triple to be either true or false. However, recent works suggest that all negative triples should not be valued equally. In line with this recent assumption, we posit that negative triples that are semantically valid w.r.t. domain and range constraints might be high-quality negative triples. As such, loss functions should treat them differently from semantically invalid negative ones. To this aim, we propose semantic-driven versions for the three main loss functions for link prediction. In an extensive and controlled experimental setting, we show that the proposed loss functions systematically provide satisfying results on three public benchmark KGs underpinned with different schemas, which demonstrates both the generality and superiority of our proposed approach. In fact, the proposed loss functions do (1) lead to better MRR and Hits@10 values, (2) drive KGEMs towards better semantic awareness as measured by the Sem@K metric. This highlights that semantic information globally improves KGEMs, and thus should be incorporated into loss functions. Domains and ranges of relations being largely available in schema-defined KGs, this makes our approach both beneficial and widely usable in practice
    corecore